Addressing the Critical Issues of Deep Learning in Medical Imaging

Original

Since being named as one of the top 10 breakthrough technologies of 2013, deep learning has hit the headlines repeatedly, with new applications emerging rapidly. In particular, deep learning techniques have proven to be powerful tools for a range of computer vision tasks, including medical imaging.

Accurate diagnosis of disease depends on the acquisition and interpretation of medical images, which is still usually undertaken by humans. Using machines instead is expected to leave less room for human error that is usually due to subjectivity, variations in expertise and opinion of interpreters, and fatigue in physicians.

With medical imaging accounting for approximately 90% of all medical data, the application of artificial intelligence to images for more efficient and accurate diagnosis could be a real game-changer. However, the technology is still relatively new, the challenges are to be expected.

At the 2017 Deep Learning in Healthcare Summit in London, Ben Glocker, Lecturer in Medical Image Computing at Imperial College London, discussed some of the successes and draw-backs in applying deep learning to medical imaging. View his presentation with slides below.

Machines capable of analysing and interpreting medical scans with super-human performance are within reach. Deep learning, in particular, has emerged as a promising tool in our work on automatically detecting brain damage. But getting from the lab into clinical practice comes with great challenges. How do we know when the machine gets it wrong? Can we predict failure, and can we make the machine robust to changes in the clinical data? This talk discusses some of our most recent work that aims to address these critical issues and demonstrate our latest results on deep learning for analysing medical scans.

View a selection of presentations from the 2017 Deep Learning in Healthcare Summit in London here, or contact Chloe cpang@re-work.co to sign up for a video membership.

The next Deep Learning in Healthcare Summit will take place in Boston on 25-26 May, alongside the annual Deep Learning Summit. Confirmed speakers include David Plans, CEO of BioBeats; Christhian Potes, Senior Scientist at Philips Research; Sergei Azernikov, Machine Learning Lead at Glidewell Laboratories; and Muyinatu Bell, Assistant Professor at John Hopkins University. View more speakers here.

Early Bird passes are available until Friday 31 MarchBook your place now.

Original
Deep Learning Machine Learning Pattern Recognition Healthcare A I MedTech Image Retrieval Deep Learning in Healthcare Summit Image Analysis

0 Comments

Search

Recommended Posts

Latest Posts

Upcoming Events

Machine Intelligence Summit Amsterdam

28 June 2017, Amsterdam

The Machine Intelligence Summit: where machine learning meets artificial intelligence. The rise of intelligent machines to make sense of data in the real world. Learn from the industry experts in speech & image recognition, natural language processing and computer vision. Explore how AI will impact transport, manufacturing, healthcare, retail and more.

Women in Affective Computing Dinner London

13 September 2017, London

Leading minds in affective computing, emotional intelligence and machine learning will come together for an evening of networking and keynote presentations around the latest advancements and trends in artificial emotional intelligence. Join a multidisciplinary group of experts from computer science to psychology to cognitive science.

Deep Learning Summit London

21 September 2017, London

The Deep Learning Summit is the next revolution in artificial intelligence. Explore the impact of image & speech recognition as a disruptive trend in business and industry. How can multiple levels of representation and abstraction help to make sense of data such as images, sound, and text. Hear the latest insights and technology advancements from industry leaders, startups and researchers.

Connect

RE•WORK on Twitter

Unavaliable

Be Sociable

  • Twitter
  • Facebook
  • Linkedin
  • Youtube
  • Flickr
  • Lanyrd
  • Instagram
  • Google plus
  • Medium