Cristian Homescu

Opportunities and challenges of machine learning in quantitative investment and wealth management

I describe specific opportunities and challenges of leveraging machine learning within context of quantitative investment and wealth management. Such applications include forecasting of financial time series, classification of alternative data, identification of market regimes, clustering-based portfolio diversification, assessment of risk factors.

Cristian is part of the Portfolio Analytics team within Chief Investment Office, Global Wealth and Investment Management division Bank of America Merrill Lynch. He is developing and investigating quantitative solutions in areas such as investment strategies, goals-based wealth management, asset allocation, machine learning and big data analysis, factor-based investing and risk factor models, portfolio risk and attribution, stress testing and scenario construction. He is very interested in application of state-of-the-art algorithms and numerical methods in wealth and investment management, and in high-performance computing. Prior to joining Bank of America Merrill Lynch, Cristian was a front office quant for Wachovia and Wells Fargo. After supporting interest rate trading desk, he was the lead quant for FX and Commodities trading desks. He has a PhD from Florida State University in computational and applied mathematics, and MSc degrees from University of Paris XI and University of Craiova.

Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more