Alexandros Papangelis

Dialogues with Plato: Concurrent training of conversational agents

In this talk I will introduce our recently released Plato Research Dialogue System - a platform for developing conversational agents - and present a method for concurrently training two conversational agents, each with different role, by letting them interact with each other via self-generated language. This is achieved by employing multi-agent reinforcement learning methods to train our agents using DSTC2 data (in the domain of restaurant information) as a testbed and show the kinds of dialogues our system can generate.

Alex is currently with Uber AI, on the Conversational AI team; his interests include statistical dialogue management, natural language processing, and human-machine social interactions. Prior to Uber, he was with Toshiba Research Europe, leading the Cambridge Research Lab team on Statistical Spoken Dialogue. Before joining Toshiba, he was a post-doctoral fellow at CMU's Articulab, working with Justine Cassell on designing and developing the next generation of socially-skilled virtual agents. He received his PhD from the University of Texas at Arlington, MSc from University College London, and BSc from the University of Athens.

Buttontwitter Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more