Adam Hornsby

Understanding Your Customers and Products Better with Neural Network Embeddings

Neural network embeddings are often used in Natural Language Processing (NLP) to model words and sentences. The unsupervised "2vec" algorithms (e.g. word2vec) learn embeddings extremely quickly, scale well and can create beautiful visualisations. dunnhumby have recently extended these algorithms to work with grocery retail data; helping us to represent products, baskets and customers within the same multidimensional space. In this talk, I'll explain how this has helped us to understand customer preferences better and discuss some of the potential use cases.

Adam is a Senior Data Scientist at dunnhumby, where he builds and deploys machine learning algorithms at scale for some of the world's largest retailers. He is also a part-time Experimental Psychology PhD student at UCL, funded by dunnhumby. His research aims to better understand customer purchase behaviour through a combination of data science, machine learning and cognitive modelling.

Buttontwitter Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more