Valeria Cortez Vaca Diez

Detecting Discriminatory Outcomes in Classification Models

Lending, policing, and hiring are some of the many areas where Machine Learning can harm disproportionately the most vulnerable groups in our society. This can lead to discrimination and long-lasting negative impact in society. It is therefore crucial to understand unfair treatment in AI to prevent automated discrimination at scale. The fundamental techniques to analyze and detect bias in Machine Learning decision can be explained through simple metrics applied to model outcomes. The aim of this presentation is to pass this knowledge to empower ML practitioners to challenge how Machine Learning is implemented.

Valeria recently joined Monzo Bank as Senior Data Scientist. Previously, she worked on the development of Machine Learning solutions for different business areas of Lloyds Banking Group and their customers. During this time, she focused on building tools and processes to detect and mitigate bias in Machine Learning models. Before joining LBG, Valeria started her career in Cambridge researching on the economics of privacy at Microsoft Research and working for TAB, a Fintech startup. Valeria is a strong advocate of ethics and responsibility in AI as well as bringing more diversity into tech teams.

Buttontwitter Buttonlinkedin
This website uses cookies to ensure you get the best experience. Learn more