Laurence Perreault Levasseur

AI to Explore The Universe: Neural Networks & Gravitational Lenses

Machine learning methods have seen a rapid expansion in the recent years. In this talk, I will discuss our results on using deep convolutional neural networks to estimate the parameters of strong gravitational lenses from telescope data. Estimating these parameters with traditional maximum-likelihood modeling methods is a time and resource consuming procedure, involving several data preparation steps and a difficult optimization process. With deep convolutional neural networks we are able to estimate these parameters in a fully automated way 10 million times faster than traditional modeling methods and with a similar accuracy. I will also discuss how to robustly quantify the uncertainties of these networks. This allows them to be a fast alternative to MCMC sampling. With the advent of large volumes of data from upcoming ground and space surveys and the remarkable speed offered by these networks, deep learning promises to become an indispensable tool for the analysis of large survey data.

Laurence joined the Flatiron Institute in September 2018 as member of the CCA. Prior to this, she was a KIPAC postdoctoral fellow at Stanford University, where she conducted research in applications of machine learning methods to cosmology. Laurence completed her PhD degree at the University of Cambridge in DAMTP, where she worked on applications of open effective field theory methods to the formalism of inflation. She received her B.Sc. and M.Sc. degrees from McGill University.

This website uses cookies to ensure you get the best experience. Learn more