Avidan Akerib

Chevron down

In-Place Computing: High-Performance Search

This presentation details an in-place associative computing technology that changes the concept of computing from serial data processing—where data is moved back and forth between the processor and memory—to massive parallel data processing, compute, and search in-place directly in the main processing array. This in-place associative computing technology removes the bottleneck at the IO between the processor and memory, resulting in significant performance-over-power ratio improvement compared to conventional methods that use CPU and GPGPU (General Purpose GPU) along with DRAM. Target applications include, convolutional neural networks, recommender systems for e-commerce, and data mining tasks such as prediction, classification, and clustering.

Avidan Akerib is VP of the Associative Computing business unit at GSI Technology. He holds a PhD from the Weizmann Institute of Science where he developed the theory of associative computing and applications for image processing and graphics. Avidan has over 30 years of experience in parallel computing, image processing and pattern recognition, and associative processing. He holds over 20 patents related to parallel computing and associative processing. 

Buttontwitter Buttonlinkedin

As Featured In

Original
Original
Original
Original
Original
Original

Partners & Attendees

Intel.001
Nvidia.001
Graphcoreai.001
Ibm watson health 3.001
Acc1.001
Rbc research.001
Facebook.001
Twentybn.001
Forbes.001
Maluuba 2017.001
Kd nuggets.001
Mit tech review.001