Feryal Behbahani

Chevron down

What Would it Take to Train an Agent to Play with a Shape-Sorter?

The capabilities of humans to precisely and robustly recognise and manipulate objects has been instrumental in the development of human cognition. However, understanding and replicating this process has proven to be difficult. This is of particular importance when thinking of agents or robots acting in naturalistic environments, solving complex tasks. I will present recent work in this direction, focusing on computational optimality and Deep Reinforcement Learning techniques, to discover how to manipulate objects within a 3D physics simulator from high-dimensional sensory observations.

Feryal has received her PhD from the Department of Computing at Imperial College London where she studied Computational Neuroscience and Machine Learning at the Brain and Behaviour Lab. Her main research focused on investigating the underlying algorithms employed by the human brain for object representation and inference. She has previously obtained her MSc in Artificial Intelligence with distinction at Imperial College London. She has also worked on projects building machine learning solutions as part of a technology consultancy start-up that she co-founded. Currently, she is a visiting postdoctoral researcher at Imperial College London where she works on transfer learning and deep reinforcement learning.

Buttontwitter Buttonlinkedin

As Featured In

Original
Original
Original
Original
Original
Original

Partners & Attendees

Intel.001
Nvidia.001
Graphcoreai.001
Ibm watson health 3.001
Facebook.001
Acc1.001
Rbc research.001
Twentybn.001
Forbes.001
Maluuba 2017.001
Mit tech review.001
Kd nuggets.001