Schedule

08:00

REGISTRATION & COFFEE

09:00

WELCOME

Rumman Chowdhury

Rumman Chowdhury, Accenture

Compère

My passion lies at the intersection of artificial intelligence and humanity. I come to data science from a quantitative social science background. Currently, I am a Senior Manager at Accenture, working on cutting edge applications of Artificial Intelligence. Currently, I serve on the Board of Directors for three AI startups. I hold two undergraduate degrees from MIT, and a Masters in Quantitative Methods of the Social Sciences from Columbia University. I am near completion of my PhD from the University of California, San Diego. More recently, I have emerged as a thought leader in the San Francisco Data Science community, with talks and tutorials at Intel Analytics Conference, Open Data Science Conference, Machine Learning Conference, Women Catalysts, PyBay, and Demystifying AI Conference. In mainstream media, I have been interviewed for the PHDivas podcast, German Public Television, and fashion line MM LaFleur. In 2017, have upcoming talks at the Global Artificial Intelligence Conference, at Strata + Hadoop San Jose, Southern Data Science Conference, and Strata + Hadoop London.

Buttontwitter Buttonlinkedin

THEORY & APPLICATIONS

09:15

Ilya Sutskever

Ilya Sutskever, OpenAI

OpenAI Universe

OpenAI Universe

AI systems are trained to perform one task. While such systems are immensely useful, future AI systems will be general, with common sense and general problem solving ability. To train such systems, we created OpenAI Universe, a software platform that allows an agent to interact with any program or website via pixels, keyboard, and mouse, thus providing access to the vast digital universe of existing programs and websites, and therefore, a great variety of tasks. In this talk, I will present Universe, and preliminary results in a research direction that, if pushed to its logical extreme, will result in systems with a general problem solving ability.

Ilya Sutskever received his PhD in 2012 from the University of Toronto working with Geoffrey Hinton. After completing his PhD, he cofounded DNNResearch with Geoffrey Hinton and Alex Krizhevsky which was acquired by Google. He is interested in all aspects of neural networks and their applications.

Buttontwitter Buttonlinkedin

09:40

Andrew Tulloch

Andrew Tulloch, Facebook

Deep Learning in Production at Facebook

Deep Learning in Production at Facebook

Facebook is powered by machine learning and AI. From advertising relevance, news feed and search ranking to computer vision, face recognition, and speech recognition, we run ML models at massive scale, computing trillions of predictions every day. I'll talk about some of the tools and tricks we use for scaling both the training and deployment of some of our deep learning models at Facebook. I'll also cover some useful libraries that we've open-sourced for production-oriented deep learning applications.

I'm a research engineer at Facebook, working on the Facebook AI Research and Applied Machine Learning teams to drive the large amount of AI applications at Facebook. At Facebook, I've worked on the large scale event prediction models powering ads and News Feed ranking, the computer vision models powering image understanding, and many other machine learning projects. I'm a contributor to several deep learning frameworks, including Torch and Caffe. Before Facebook, I obtained a masters in mathematics from the University of Cambridge, and a bachelors in mathematics from the University of Sydney.

Buttonlinkedin

10:05

Brendan Frey

Brendan Frey, Deep Genomics

Keynote: Reprogramming the Human Genome: Why AI is Needed

Reprogramming the Human Genome: Why AI is Needed

We have figured out how to write to the genome using DNA editing, but we don't know what the outcomes of genetic modifications will be. This is called the "genotype-phenotype gap". To close the gap, we need to reverse-engineer the genetic code, which is very hard because biology is too complicated and noisy for human interpretation. Machine learning and super-human AI are needed. The data? Six billion letters per genome, hundreds of thousands of biomolecules, hundreds of cell types, over six billion people on the planet. A new generation of "Bio-AI" researchers are poised to crack the problem, but we face extraordinary challenges. I'll discuss these challenges, focusing on which branches of AI will have the most impact and why.

Brendan Frey is internationally recognized as a leader in machine learning and genome biology. His group has published over a dozen papers in Science, Nature and Cell, and their most recent work on using deep learning to identify protein-DNA interactions was highlighted on the front cover Nature Biotechnology. Frey is a Fellow of the Royal Society of Canada, a Fellow of the Institute for Electrical and Electronic Engineers, and a Fellow of the American Association for the Advancement of Science. He has consulted for several industrial research and development laboratories in Canada, the United States and England, and has served on the Technical Advisory Board of Microsoft Research. Most recently, Dr. Frey spun out a company called Deep Genomics.

Buttontwitter Buttonlinkedin

10:45

COFFEE

REINFORCEMENT LEARNING & UNSUPERVISED LEARNING

11:20

Andrej Karpathy

Andrej Karpathy, OpenAI

Reinforcement Learning on the Web

I'll present our work on training reinforcement learning agents to interact with and complete tasks in web browsers. In the short term our agents are learning to interact with common UI web elements like buttons, sliders and text fields. In the longer term we hope to address more complex tasks, such as achieving competence in interactive online exercises intended for schoolchildren to learn mathematics. I'll use these examples to also give a short but complete Reinforcement Learning tutorial.

Andrej is a 5th year PhD student at Stanford University, studying Deep Learning and its applications to Computer Vision and Natural Language Processing. In particular, his recent work has focused on Image Captioning, Recurrent Neural Network Language Models and Reinforcement Learning. On a side, he enjoys implementing state of the art Deep Learning models in Javascript, competing against Convolutional Networks on the ImageNet challenge, and blogging. Before joining Stanford he completed an undergraduate degree in Computer Science and Physics at the University of Toronto and a Computer Science Master's degree at the University of British Columbia.

Buttontwitter Buttonlinkedin

11:45

Ofir Nachum

Ofir Nachum, Google

UREX: Under-appreciated Reward Exploration

UREX: Under-appreciated Reward Exploration

The most widely-used exploration methods in reinforcement learning today (like entropy regularization and epsilon-greedy) have not changed much in the last 20 years. We argue that these exploration strategies are naive and misguided in large action spaces. We present UREX, a policy gradient algorithm that explores more in areas of high reward. We motivate UREX mathematically by showing that its objective is a combination of expected reward and a mean-seeking KL divergence with the "expert" policy. Moreover, we show that UREX empirically performs better than standard methods on a suite of algorithmic tasks.

Ofir Nachum currently works at Google Brain as a Research Resident. His research focuses on sequence-to-sequence models and reinforcement learning, although his interests include a much larger area of machine learning. He received his Bachelor's and Master's from MIT. Before joining Google, he was an engineer at Quora, leading machine learning efforts on the feed, ranking, and quality teams.

Buttontwitter Buttonlinkedin

12:05

Chelsea Finn

Chelsea Finn, UC Berkeley

End-To-End Deep Robotic Learning

End-To-End Deep Robotic Learning

Deep learning has enabled countless successes on a number of applications, including computer vision, speech recognition, and machine translation. While many of such systems are already deployed, the field of robotics has yet to reap the benefits that other areas have experienced -- in general, standard deep learning methods are not directly applicable to robotic learning. In this talk, I will discuss how deep unsupervised and supervised learning techniques can enable robots to learn manipulation skills from raw pixel inputs. In particular, I will show how robots can learn mental models of the visual world and imagine the outcomes of their actions, and how unsupervised learning can be used to allow robots to build internal representations of moving objects. I will end by sharing my vision for the future of deep robotic learning and hypothesize what machine learning advances we need before reaching human-level AI in robotics.

Chelsea Finn is a PhD student at UC Berkeley, studying machine learning for robotic perception and control. She is interested in how learning algorithms can enable robots to autonomously acquire complex sensorimotor skills. Before joining Berkeley AI Research, she received a Bachelors in Electrical Engineering and Computer Science at MIT.

Buttonlinkedin

12:25

LUNCH

13:35

Toru Nishikawa

Toru Nishikawa, Preferred Networks

Deep Learning: IoT's Driving Engine

Preferred Networks Inc. (PFN), has been actively working on applications of deep learning on real world problems. In collaboration with leading companies and research institues, PFN has been focusing on deep learning in three domains: Industrial machinery including manufacturing robots, Smart transportation including autonomous driving, and Lifescience including cancer diagnosis and treatment. In December 2016, together with FANUC, a world leader in industrial machinery and industrial robots, we launch the world’s first commercial IoT platform for manufacturing that has Deep Learning technology at its core. In IoT, among other industries, Deep Learning is not only a research topic any more, but an important key technology in driving business.

The dramatic evolvement in the functional capabilities of IoT devices, and the fact that data generated by devices is incomparably larger than that generated by humans, are two particularly important factors contributing to the fast-paced innovation in various industries. Similarly, advancement in Deep Learning research is expanding its applications beyond pure data analysis to device actuation and control in the physical world. However, in order for algorithms to be able to efficiently learn real-time control of real world devices, a combination of advancement in both Deep Learning and computing is essential. That is the concept of Edge-Heavy-Computing where by bringing intelligence close to the network edge devices, the overall system makes it possible for those devices to efficiently learn in a distributed and collaborative manner, while resolving the data communication bottleneck often faced in IoT applications. In this talk, I will introduce some of the work we have been doing at PFN, highlight some results, and also give examples of how new computing boosts the value brought by Deep Learning.

Toru Nishikawa is the president and CEO of Preferred Networks, Inc., a Tokyo-based startup company specialized in applying the latest artificial intelligence technologies to emerging problems in the area of Internet of Things (IoT). He was one of the world finalists of the ACM ICPC (International Collegiate Programming Contest) while he was a graduate student of University of Tokyo. In 2006, he, together with his collegemates and his fellow contenders at ICPC, founded Preferred Infrastructure, Inc., a precursor company. In 2014, Nishikawa founded Preferred Networks with the aim of expanding their businesses into the realization of Deep Intelligence – a future IoT in which all devices, as well as the network itself, are equipped with machine intelligence. He is an ambitious entrepreneur, programmer, and father of a child.

Buttontwitter Buttonlinkedin

COMPUTER VISION

14:00

Ian Goodfellow

Ian Goodfellow, OpenAI

Generative Adversarial Networks

Generative Adversarial Networks

Generative adversarial networks (GANs) use deep learning to imagine new, previously unseen data, such as images. GANs are based on a game between two players: a generator network that creates images, and a discriminator network that guesses whether images came from the training data or from the generator network. This game resembles the conflict between counterfeiters and the police, with counterfeiters forced to learn to produce realistic fakes. At equilibrium, the generator produces images that come from the same probability distribution as the training data, and the discriminator is unable to tell whether images are real or fake.

Ian Goodfellow is a research scientist at OpenAI. He is the lead author of the MIT Press textbook Deep Learning. In addition to generative models, he also studies security and privacy for machine learning. He has contributed to open source libraries including TensorFlow, Theano, and Pylearn2. He obtained a PhD from University of Montreal in Yoshua Bengio's lab, and an MSc from Stanford University, where he studied deep learning and computer vision with Andrew Ng. He is generally interested in all things deep learning.

Buttontwitter Buttonlinkedin

14:20

Alexei Efros

Alexei Efros, UC Berkeley

Unsupervised Learning in Computer Vision

Unsupervised Learning in Computer Vision

Computer vision has made great progress through the use of deep learning, trained with large-scale labeled data. However, good labeled data requires expertise and curation and can be expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning -- using raw data as its own supervision -- for tasks in computer vision and computer graphics.

Alexei Efros (associate professor, UC Berkeley) works in the area of computer vision and computer graphics, especially at the intersection of the two. He is particularly interested in using data-driven techniques to tackle problems where large quantities of unlabeled visual data are readily available. He is a recipient of NSF CAREER award (2006), Sloan Fellowship (2008), Guggenheim Fellowship (2008), SIGGRAPH Significant New Researcher Award (2010), and the Helmholtz Test-of-Time Prize (2013).

Buttontwitter Buttonlinkedin

14:40

Durk Kingma

Durk Kingma, OpenAI

Variational Autoencoders

Variational Autoencoders

Current deep learning mostly relies on supervised learning: given a vast amount of examples of humans performing tasks such as labeling images or translation, we can teach computers to mimic humans at these tasks. Since supervised methods only focus on modeling the task directly, however, these methods are not particularly efficient: they need much more examples than humans require for learning new tasks. Enter unsupervised learning, where computers not only model tasks, but also their context, vastly improving data efficiency. We discuss the powerful framework of Variational Autoencoders (VAEs), a synthesis of deep learning and Bayesian methods, as a principled yet practical approach towards unsupervised deep learning. In addition to the underlying mathematics, we discuss current scientific and practical applications of VAEs, such as semi-supervised learning, drug discovery, and image resynthesis.

Diederik (or Durk) Kingma is a Research Scientist at OpenAI, with a focus on unsupervised deep learning. His research carreer started in 2009, while graduated at Utrecht University, working with prof. Yann LeCun at NYU. Since 2013, he pursues a PhD with prof. Max Welling in Amsterdam, focusing on the intersection of deep learning and Bayesian inference. Early in his PhD, he proposed the Variational Autoencoder (VAE), a principled framework for Bayesian unsupervised deep learning. Other well-known work is Adam, a now standard method for stochastic gradient descent.

Buttontwitter Buttonlinkedin

15:00

Brad Folkens

Brad Folkens, CloudSight

Your AI is Blind

Your AI is Blind

The final missing piece in AI is Visual Cognition and Understanding. In order for this dream to be realized, it takes more than winning scores at classifying ImageNet. We discuss our 4 years of experience in scaling, quality control, data management, and other important lessons learned in commercializing computer vision in the marketplace, including the procurement of the largest training dataset ever created for Visual Cognition and Understanding through Deep Learning.

Brad Folkens is the co-founder and CTO of CloudSight, where he leads the effort to build the world’s first visual cognition platform to power the future of AI. He earned his Theoretical Computer Science and Mathematics degrees with honors and immediately went to work building profitable companies, first with the award winning PublicSalary.com HR Tool, and later with his co-founder, Dominik, grossing over $1m/year in revenue.

Buttontwitter Buttonlinkedin

15:20

COFFEE

DEEP LEARNING & ECONOMIC IMPACT

15:55

PANEL: How Will Deep Learning Change Manufacturing and Industry?

Shivon Zilis

Shivon Zilis, Bloomberg

Panelist

Shivon is a partner and founding member of Bloomberg Beta, a $75 million venture fund backed by Bloomberg L.P. that invests in startups transforming the future of work. Shivon is obsessed with the most important force changing work, machine intelligence. She is known for an annual report that researches thousands of machine intelligence companies and selects the most promising real-world problems they are solving. Bloomberg Beta has invested in more than 25 machine intelligence companies to date. She graduated from Yale, where she was the goalie on the ice hockey team. She is an advisor to OpenAI, a fellow at the Creative Destruction Lab, on the advisory board of University of Alberta's Machine Learning group, and a charter member of C100. She co-hosts an annual conference at the University of Toronto that brings together the foremost authors, academics, founders, and investors in machine intelligence. She was one of Forbes 30 Under 30 in Venture Capital.

Buttontwitter Buttonlinkedin

Modar Alaoui

Modar Alaoui, Eyeris

Panelist

Driver Monitoring For Connected Semi-autonomous Vehicles & The Future Of Automotive HMI

This session will cover an artificially intelligent driver attention, cognitive awareness and emotion distraction monitoring system. We reveal how the technology reads facial micro expressions in real time to authenticate drivers and distinctly detect their seven universal emotions, gender, age group, eye tracking, 3D head pose and gaze estimation. During the second half of this session, we will cover a number of driver derivative metrics that trigger the activation of various reactive support systems, necessary to saving lives and improving driving behavior through better Human Machine Interfaces. This session will end with a highly rated 1-minute live demo on stage!

Modar is a serial entrepreneur and expert in AI-based vision software development. He is currently founder and CEO at Eyeris, developer of a Deep Learning-based emotion recognition software, EmoVu, that reads facial micro-expressions. Eyeris uses Convolutional Neural Networks (CNN's) as a Deep Learning architecture to train and deploy its algorithm in to a number of today’s commercial applications. Modar combines a decade of experience between Human Machine Interaction (HMI) and Audience Behavioral Measurement. He is a frequent keynoter on “Ambient Intelligence”, a winner of several technology and innovation awards and has been featured in many major publications for his work.

Buttontwitter Buttonlinkedin

Inmar Givoni

Inmar Givoni, Kindred

Panelist

Inmar Givoni is the Director of Machine Learning at Kindred, a Toronto based startup, where her team develops algorithms for machine intelligence, at the intersection of robotics and AI. Prior to that, she was the VP of Big Data at Kobo, where she led her team in applying machine learning and big data techniques to drive e-commerce, customer satisfaction, CRM, and personalization in the e-pubs and e-readers business. She first joined Kobo in 2013 as a senior research scientist working on content analysis, website optimization, and reading modelling among other things. Prior to that, Inmar was a member of technical staff at Altera where she worked on optimization algorithms for cutting-edge programmable logic devices.

Inmar received her PhD (Computer Science) in 2011 from the University of Toronto, specializing in machine learning, and was a visiting scholar at the University of Cambridge. During her graduate studies, she worked at Microsoft Research, applying machine learning approaches for e-commerce optimization for Bing, and for pose-estimation in the Kinect gaming system. She holds a BSc in computer science and computational biology from the Hebrew University in Jerusalem. She is an inventor of several patents and has authored numerous top-tier academic publications in the areas of machine learning, computer vision, and computational biology. She is a regular speaker at big data, analytics, and machine learning events, and is particularly interested in outreach activities for young women, encouraging them to choose technical career paths.

Buttonlinkedin

DEEP LEARNING SYSTEMS

16:20

Andres Rodriguez

Andres Rodriguez, Intel

Catalyzing Deep Learning’s Impact in the Enterprise

Catalyzing Deep Learning’s Impact in the Enterprise

Deep learning is unlocking tremendous economic value across various market sectors. Individual data scientists can draw from several open source frameworks and basic hardware resources during the very initial investigative phases but quickly require significant hardware and software resources to build and deploy production models. Intel offers various software and hardware to support a diversity of workloads and user needs. Intel Nervana delivers a competitive deep learning platform to make it easy for data scientists to start from the iterative, investigatory phase and take models all the way to deployment. This platform is designed for speed and scale, and serves as a catalyst for all types of organizations to benefit from the full potential of deep learning. Example of supported applications include but not limited to automotive speech interfaces, image search, language translation, agricultural robotics and genomics, financial document summarization, and finding anomalies in IoT data.

Andres Rodriguez is a deep learning solutions architect with Intel Nervana where he designs deep learning solutions for Intel’s customers and provides technical leadership across Intel for deep learning. Andres received his PhD from Carnegie Mellon University for his research in machine learning, and prior to joining Intel, he was a deep learning research scientist with the Air Force Research Laboratory. He holds over 20 peer reviewed publications in journals and conferences, and a book chapter on machine learning.

Buttontwitter Buttonlinkedin

16:40

Avidan Akerib

Avidan Akerib, GSI Technology

In-Place Computing: High-Performance Search

In-Place Computing: High-Performance Search

This presentation details an in-place associative computing technology that changes the concept of computing from serial data processing—where data is moved back and forth between the processor and memory—to massive parallel data processing, compute, and search in-place directly in the main processing array. This in-place associative computing technology removes the bottleneck at the IO between the processor and memory, resulting in significant performance-over-power ratio improvement compared to conventional methods that use CPU and GPGPU (General Purpose GPU) along with DRAM. Target applications include, convolutional neural networks, recommender systems for e-commerce, and data mining tasks such as prediction, classification, and clustering.

Avidan Akerib is VP of the Associative Computing business unit at GSI Technology. He holds a PhD from the Weizmann Institute of Science where he developed the theory of associative computing and applications for image processing and graphics. Avidan has over 30 years of experience in parallel computing, image processing and pattern recognition, and associative processing. He holds over 20 patents related to parallel computing and associative processing. 

Buttontwitter Buttonlinkedin

17:00

Conversation & Drinks - sponsored by Qualcomm

08:00

REGISTRATION & COFFEE

09:00

WELCOME

Nathan Benaich

Nathan Benaich, Playfair Capital

Compère

I joined Playfair Capital in 2013 to focus on deal sourcing, due diligence, and helping our companies grow. I'm particularly interested in artificial intelligence and machine learning, infrastructure-as-a-service, mobile, and bioinformatics. I've led, originated or participated in Seed through Growth investments including Mapillary, Appear Here, Dojo, and Festicket.

Prior to Playfair, I earned an M.Phil and Ph.D in oncology as a Gates and Dr. Herchel Smith Scholar at the University of Cambridge, and a BA in biology from Williams College. I've published research focused on technologies to halt the fatal spread of cancer around the body.

Buttontwitter Buttonlinkedin

STARTUP SESSION

09:15

Will Jack

Will Jack, Remedy

Bringing Deep Learning to The Front Lines of Healthcare

Bringing Deep Learning to The Front Lines of Healthcare

Today’s healthcare system is not built for the seamless integration of innovations in machine learning. Health data is heavily siloed, inaccessible, and non standardized, making it challenging to work with in machine learning systems. Additionally, deep learning techniques aren’t well suited for many healthcare problems due to the difficulty in interpreting their decisions. At Remedy, we’re building a healthcare system that captures granular data at the point of care, and enables the deployment of machine learning models at the point of care. We’re also developing interpretable model to tackle tasks such as diagnosis, physician education, treatment planning, and triage.

Will is CEO of Remedy Health, a startup focused on building a healthcare system around a strong software backbone to enable the seamless integration of new innovations into care. Will is also a venture partner at Alsop Louie Partners. Prior to this Will worked in R&D on SpaceX’s internet satellite project, and studied physics and computer science at MIT. An Ohio native, Will spent his childhood developing a particle collider in his basement, using the nuclear reactions it carried out to investigate novel methods of medical imaging.

Buttontwitter Buttonlinkedin

09:30

Alex Dalyac

Alex Dalyac, Tractable

Addressing the Labelling Bottleneck in Computer Vision for Learning Expert Tasks

Thanks to deep learning, AI algorithms can now surpass human performance in image classification. However, behind these results lie tens of thousands of man hours spent annotating images. This significantly prohibits commercial applications where cost and time to market are key. At Tractable, our solution centers on creating a feedback loop from learning algorithm to human, turning the latter into a “teacher” rather than a blind labeler. Dimensionality reduction, information retrieval and transfer learning are some of our core proprietary techniques. We will demonstrate a 15x labeling cost reduction on the expert task of estimating from images the cost to repair a damaged vehicle – an important application for the insurance industry.

Alex is Co-founder & CEO of Tractable, a young London-based startup bringing recent breakthroughs in AI to industry. Tractable's current focus is on automating visual recognition tasks. Its long term vision is to expand into natural language, robot control, and spread disruptive AI throughout industry. Tractable was founded in 2014 and is backed by $2M of venture capital from Silicon Valley investors, led by Zetta Venture Partners. Alex has a degree in econometrics & mathematical economics from the LSE, and a postgraduate degree in computer science from Imperial College London. Alex's experience within Deep Learning investing is on the receiving side, particularly on how to attract US venture capital into Europe as early as the seed stage.

Buttonlinkedin

09:45

Roland Memisevic

Roland Memisevic, Twenty Billion Neurons

The "Something Something" Video Dataset

The "Something Something" Video Dataset

Neural networks trained on datasets like imagenet have recently led to major advances in visual object classification. A main obstacle that prevents networks from reasoning more deeply about scenes and situations, and from integrating visual information with natural language, like humans do, is their lack of common sense knowledge about the physical world. Unlike still images, fine-grained prediction tasks in videos can reveal such physical information, because videos implicitly encode properties such as 3-D geometry, materials, "objectness", and affordances. In this talk, I will describe a new video dataset we created, showing objects engaged in complex motions and interactions. I will also show how neural networks can learn from this data to make fine-grained predictions about actions and situations.

Roland Memisevic received his PhD in Computer Science from the University of Toronto in 2008. He subsequently held positions as research scientist at PNYLab, Princeton, as post-doctoral fellow at the University of Toronto and ETH Zurich, and as junior professor at the University of Frankfurt. In 2012 he joined the MILA deep learning group at the University of Montreal as assistant professor. He has been on leave from his academic position since 2016 to lead the research efforts at Twenty Billion Neurons, a German-Canadian AI startup he co-founded. Roland is Fellow of the Canadian Institute for Advanced Research (CIFAR).

Buttontwitter Buttonlinkedin

10:00

Augustin Marty

Augustin Marty, Deepomatic

Creating Image Recognition Solutions Through DL & Human-Machine Cooperation

Creating Image Recognition Solutions Through Deep Learning & Human-Machine Cooperation

In the past several years there have been a number of advances in computer vision, mostly for general tagging. These however do not work for industry-specific image-recognition needs. Today, high quality datasets are accessible and are at the foundation of specialised AI applications for firms in a great number of industries (retail, defense and security, robotics…). In this talk we discuss how Deepomatic uses machine-human cooperation techniques to build datasets that fuel specialised image recognition solutions. Then we will discuss how we develop and deploy effective and scalable solutions in diverse industries, with the example of a defense and security client.

Augustin Marty is the CEO and Co-founder of Deepomatic. By 28 he had founded his first company in China, had worked in India, optimising combustion cycles for Power Plants, and at Vinci Construction Group designing and selling engineering projects. Augustin met his cofounders just after high school; sharing the same passion for entrepreneurship they decided to partner in early 2014 and created Deepomatic, the image intelligence company.

Buttontwitter Buttonlinkedin

10:15

COFFEE

DEEP LEARNING APPLICATIONS IN INDUSTRY & BUSINESS

10:55

Shubho Sengupta

Shubho Sengupta, Facebook AI Research (FAIR)

Systems Challenges for Deep Learning

Systems Challenges for Deep Learning

Training neural network models and deploying them in production poses a unique set of computing challenges. The ability to train large models fast, allows researchers to explore the model landscape quickly and push the boundaries of what is possible with Deep Learning. However a single training run often consumes several exaflops of compute and can take a month or more to finish. Similarly, some problem areas like speech synthesis and recognition have real time requirements which places a limit on how much time it can take to evaluate a model in production. In this presentation, I will talk about three systems challenges that need to be addressed so that we can continue to train and deploy rich neural network models.

Shubho is now working on AI Research at FAIR. He was previous a senior research scientist at Silicon Valley AI Lab (SVAIL) at Baidu Research.

I am an architect of the High Performance Computing inspired training platform that is used to train some of the largest recurrent neural network models in the world at SVAIL. I also spend a large part of my time exploring models for doing both speech recognition and speech synthesis and what it would take to train these model at scale and deploy them to hundreds of millions of our users. I am the primary author of the WarpCTC project that is used commonly for speech recognition. Before coming to the industry, I got my PhD in Computer Science from UCDavis focusing on parallel algorithms for GPU computing and subsequently went to Stanford for a Masters in Financial Math.

Buttonlinkedin

11:15

Sergey Levine

Sergey Levine, UC Berkeley

Deep Robotic Learning

Deep Robotic Learning

The problem of building an autonomous robot has traditionally been viewed as one of integration: connecting together modular components, each one designed to handle some portion of the perception and decision making process. For example, a vision system might be connected to a planner that might in turn provide commands to a low-level controller that drives the robot's motors. In this talk, I will discuss how ideas from deep learning can allow us to build robotic control mechanisms that combine both perception and control into a single system. This system can then be trained end-to-end on the task at hand. I will show how this end-to-end approach actually simplifies the perception and control problems, by allowing the perception and control mechanisms to adapt to one another and to the task. I will also present some recent work on scaling up deep robotic learning on a cluster consisting of multiple robotic arms, and demonstrate results for learning grasping strategies that involve continuous feedback and hand-eye coordination using deep convolutional neural networks.

Sergey Levine is an assistant professor at UC Berkeley. His research focuses on robotics and machine learning. In his PhD thesis, he developed a novel guided policy search algorithm for learning complex neural network control policies, which was later applied to enable a range of robotic tasks, including end-to-end training of policies for perception and control. He has also developed algorithms for learning from demonstration, inverse reinforcement learning, efficient training of stochastic neural networks, computer vision, and data-driven character animation.

Buttontwitter Buttonlinkedin

11:35

Stefano Ermon

Stefano Ermon, Stanford University

Machine Learning for Sustainability

Machine Learning for Sustainability

Policies for sustainable development entail complex decisions about balancing environmental, economic, and societal needs. Making such decisions in an informed way presents significant computational challenges. Modern AI techniques combined with new data streams have the potential to yield accurate, inexpensive, and highly scalable models to inform research and policy. In this talk, I will present an overview of my group's research on applying computer science techniques in sustainability domains, including poverty and food security.

Stefano Ermon is an Assistant Professor in the Department of Computer Science at Stanford University, where he is affiliated with the Artificial Intelligence Laboratory and the Woods Institute for the Environment. Stefano's research is centered on techniques for scalable and accurate inference in graphical models, statistical modeling of data, large-scale combinatorial optimization, and robust decision making under uncertainty, and is motivated by a range of applications, in particular ones in the emerging field of computational sustainability.

Buttonlinkedin

11:55

Bryan Catanzaro

Bryan Catanzaro, NVIDIA

More than a GPU: Platforms for Deep Learning

More than a GPU: Platforms for Deep Learning

Training and deploying state of the art deep neural networks is very computationally intensive, with tens of exaflops needed to train a single model on a large dataset. The high density compute afforded by modern GPUs has been key to many of the advances in AI over the past few years. However, researchers need more than a fast processor – they also need optimized libraries, and tools to efficiently program so that they can experiment with new ideas. They also need scalable systems that use many of these processors together to train a single model. In this talk, I’ll discuss platforms for deep learning, and how NVIDIA is working to make the platforms of the future for Deep Learning.

Bryan Catanzaro is VP of Applied Deep Learning Research at NVIDIA, where he leads a team solving problems in fields ranging from video games to chip design using deep learning. Prior to his current role at NVIDIA, he worked at Baidu to create next generation systems for training and deploying end-to-end deep learning based speech recognition. Before that, he was a researcher at NVIDIA, where he wrote the research prototype and drove the creation of CUDNN, the low-level library now used by most AI researchers and deep learning frameworks to train neural networks. Bryan earned his PhD from Berkeley, where he built the Copperhead language and compiler, which allows Python programmers to use nested data parallel abstractions efficiently. He earned his MS and BS from Brigham Young University, where he worked on computer arithmetic for FPGAs.

Buttontwitter Buttonlinkedin

12:15

LUNCH

13:20

Judy Hoffman

Judy Hoffman, Stanford Computer Vision Group

A General Framework for Domain Adversarial Learning

A General Framework for Domain Adversarial Learning

Deep convolutional networks have provided significant advances in recent years, but progress has primarily been limited to fully supervised settings, requiring large amounts of human annotated data for training. Recent results in adversarial adaptive representation learning demonstrate that such methods can also excel when learning in sparse/weakly labeled settings across modalities and domains. In this talk, I will present a general framework for domain adversarial learning, by which a game is played between a discriminator which seeks to determine whether an image arises from the large labeled data source or from the new sparsely labeled dataset, while the representation seeks to limit the distinguishability of the two data sources. Together this game produces a model adapted for the new domain with minimal or no new human annotations.

Judy Hoffman is a Postdoctoral Researcher in the Stanford Computer Vision group, working with Fei-Fei Li. Her research focuses on developing learning representations and recognition models with limited human annotations. She received her PhD in Electrical Engineering and Computer Science from University of California, Berkeley in Summer 2016, where she was advised by Trevor Darrell and Kate Saenko. She is interested in lifelong learning, adaptive methods, and adversarial models.

Buttontwitter Buttonlinkedin

13:40

Chris Moody

Chris Moody, Stitch Fix

Practical, Active, Interpretable & Deep Learning

Practical, Active, Interpretable & Deep Learning

I'll review applied deep learning techniques we use at Stitch Fix to understand our client's personal style. Interpretable deep learning models are not only useful to scientists, but lead to better client experiences -- no one wants to interact with a black box virtual assistant. We do this in several ways. We've extended factorization machines with variational techniques, which allows us to learn quickly by finding the most polarizing examples. And by enforcing sparsity in our models, we have RNNs and CNNs that reveal how they function. The result is a dynamic machine that learns quickly and challenges our client's style.

Chris Moody came from a Physics background from Caltech and UCSC, and is now a scientist at Stitch Fix's Data Labs. He has an avid interest in NLP, has dabbled in deep learning, variational methods, and Gaussian Processes. He's contributed to the Chainer deep learning library (http://chainer.org/), the super-fast Barnes-Hut version of t-SNE to scikit-learn (http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) and written (one of the few!) sparse tensor factorization libraries in Python (https://github.com/stitchfix/ntflib). Lately he's been working on lda2vec (https://lda2vec.readthedocs.org/en/latest/).

Buttontwitter Buttonlinkedin

14:00

Stacey Svetlichnaya

Stacey Svetlichnaya, Flickr

Deep Learning for Emoji Prediction

Quantifying Visual Aesthetics on Flickr

What makes an image beautiful? More pragmatically, can an algorithm distinguish high-quality photographs from casual snapshots to improve search results, recommendations, and user engagement at scale? We leverage social interaction with Flickr photos to generate a massive dataset for computational aesthetics and train machine learning models to predict the likelihood images being of high, medium, or low quality. I will present our approach and findings, address some of the challenges of quantifying subjective preferences, and discuss applications of the aesthetics model to finding, sharing, and creating visually compelling content in an online community.

Stacey Svetlichnaya is a software engineer on the Yahoo Vision & Machine Learning team. Her recent deep learning research includes object recognition, image aesthetic quality and style classification, photo caption generation, and modeling emoji usage. She has worked extensively on Flickr image search and data pipelines, as well as automating content discovery and recommendation. Prior to Flickr, she helped develop a visual similarity search engine with LookFlow, which Yahoo acquired in 2013. Stacey holds a BS and MS in Symbolic Systems from Stanford University.

Buttontwitter Buttonlinkedin

14:20

Tony Jebara

Tony Jebara, Netflix

Personalized Content/Image Selection

Personalized Content/Image Selection

A decade ago, Netflix launched a challenge to predict how each user would rate each movie in our catalog. This accelerated the science of machine learning and matrix factorization. Since then, our learning algorithms and models have evolved with multiple layers, multiple stages and nonlinearities. Today, we use machine learning and deep variants to rank a large catalog by determining the relevance of each of our titles to each of our users, i.e. personalized content selection. We also use machine learning to find how to best present the top ranked items for the user. This includes selecting the best images to display for each title just for you, i.e. personalized image selection.

Tony directs machine learning research at Netflix and is sabbatical professor at Columbia University. He serves as general chair of the 2017 International Conference on Machine Learning. He has published over 100 scientific articles in the field of machine learning and has received several best paper awards.

Buttontwitter Buttonlinkedin

14:40

Danny Lange

Danny Lange, Unity Technologies

Bringing Machine Learning to Every Corner of Your Business

Bringing Machine Learning to Every Corner of Your Business

Have you noticed how applications seem to get smarter? Apps make recommendations based on past purchases; you get an alert from your bank when they suspect a fraudulent transaction; and you receive emails from your favorite store when items related to things you typically buy are on sale. These examples of application intelligence use a technology called Machine Learning. Machine Learning uses algorithms to detect patterns in old data and build models that can be used to make predictions from new data. Understanding the algorithms behind Machine Learning is difficult and running the infrastructure needed to build accurate models and use these models at scale is very challenging. At Uber we have built a Machine Learning service that easily allows our teams to embed intelligence into their applications that can perform important functions such as ETA, fraud detection, churn prediction, forecasting demand, and much more.

Dr. Danny B. Lange is Head of Machine Learning at Uber where he leads an effort to build the world’s most versatile Machine Learning platform to support Uber’s rapid growth. With the help of this branch of Artificial Intelligence including Deep Learning, Uber can provide an even better service to its customers. Previously, Danny was the General Manager of Amazon Machine Learning - an AWS product that offers Machine Learning as a Service. Prior to Amazon, Danny was Principal Development Manager at Microsoft where he was leading a product team focused on large-scale Machine Learning for Big Data. Danny has a Ph.D. in Computer Science from the Technical University of Denmark.

Buttontwitter Buttonlinkedin

15:00

END OF SUMMIT

Day 2
13:20

Shohei Hido

Shohei Hido, Preferred Networks

Frontier of Deep Learning in Manufacturing

Shohei Hido received M.S in Informatics from Kyoto University in Japan, 2006. Since then, he has worked at IBM Research in Tokyo for six years as a staff researcher in machine learning and its applications to industries. After joining Preferred Infrastructure, Inc. in 2012, he has worked as the leader of Jubatus project, an open source software framework for real-time, streaming machine learning. After being assigned as Chief Research Officer of Preferred Networks, the spin-off company, he is currently responsible for Deep Intelligence in-Motion, software platform for using deep learning in IoT applications.

Buttontwitter Buttonlinkedin

Connect

RE•WORK on Twitter

Unavaliable

Be Sociable

  • Twitter
  • Facebook
  • Linkedin
  • Youtube
  • Flickr
  • Lanyrd
  • Instagram
  • Google plus
  • Medium